Short communication

Fast and discriminative CoSYPS detection system of viable Salmonella spp. and Listeria spp. in carcass swab samples

Elodie Barbau-Piednoir a,b,c, Nadine Botteldoorn a,k,1, Jacques Mahillon b, Katelijne Dierick a, Nancy H. Roosens a,k,1

a Scientific Service Food-borne pathogens, Scientific Institute of Public Health, Brussels, Belgium
b Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
c Institute of Public Health, Brussels, Belgium

A R T I C L E   I N F O

Article history:
Received 28 April 2014
Received in revised form 25 August 2014
Accepted 15 September 2014
Available online 20 September 2014

Keywords:
ISO 16140:2003
Listeria
Salmonella
Swabs
Complete CoSYPS Path Food workflow

A B S T R A C T

In this study, the complete CoSYPS Path Food workflow including all steps, namely swab sample enrichment, SYBR®Green qPCR detection of Salmonella spp. and Listeria spp., isolation and confirmation of the detected strain, was validated on beef carcass swabs. To perform the validation, the results of the complete workflow were compared, according to the ISO 16140:2003, with the ISO reference methods for detection, isolation and confirmation of Listeria monocytogenes and Salmonella spp. The results showed that the relative level of detection and the limit of detection of the complete workflow and ISO reference methods are in a range from 2 to 16 CFU/swab for both bacteria. The relative specificity, sensitivity and accuracy identified during this validation were all 100% since the results obtained with the complete CoSYPS Path Food workflow and the ISO reference methods were identical (Cohen’s kappa index = 1.00). In addition the complete CoSYPS Path Food workflow is able to provide detection results (negative or presumptive positive) in half the time needed as for the ISO reference methods. These results demonstrate that the performance of the complete CoSYPS Path Food workflow is not only comparable to the ISO reference methods but also provides a faster response for the verification of beef carcasses before commercial distribution.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Worldwide there are annually 1.3 billion cases of human gastroenteritis due to Salmonella spp. (Bhunia, 2008b). In European Union (EU), Salmonella is the first notification cause of microbial foodborne contamination (Commission of the European Union, 2012), and the main reported causative agent in foodborne outbreaks (EFSA and ECDC, 2014). The main transmission route to humans is contaminated food consumption (EFSA and ECDC, 2014). The results showed that the relative level of detection and the limit of detection of the complete workflow and ISO reference methods are in a range from 2 to 16 CFU/swab for both bacteria. The relative specificity, sensitivity and accuracy identified during this validation were all 100% since the results obtained with the complete CoSYPS Path Food workflow and the ISO reference methods were identical (Cohen’s kappa index = 1.00). In addition the complete CoSYPS Path Food workflow is able to provide detection results (negative or presumptive positive) in half the time needed as for the ISO reference methods. These results demonstrate that the performance of the complete CoSYPS Path Food workflow is not only comparable to the ISO reference methods but also provides a faster response for the verification of beef carcasses before commercial distribution.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

(Bhunia, 2008a). The main transmission route to humans is contaminated food consumption (EFSA and ECDC, 2014).

As foodborne pathogen reservoirs are mainly farm animals, food-stuffs from animals are controlled according to the regulation (EC) No. 854/2004 (Commission of the European Union, 2004). Meat is one of the most important foodborne pathogen vehicles (Commission of the European Union, 2005). Meat is usually contaminated on the surface during the slaughter process by faecal contamination during evisceration (FSA, 2002). The meat contamination by foodborne pathogens is assessed by carcasses monitoring at slaughterhouse. Carcasses sampling can be performed by destructive (excision or drilling) or by non-destructive methods (swabbing). The latter presents the advantages to be non-destructive and causes no damage to the carcasses (no commercial impact), and it allows the sampling of a large surface (up to 1600 cm²/carcass (EFSA and ECDC, 2014)). This large surface sampling is an important advantage for detection of low contamination levels (Lindblad, 2007).

The regulation (EC) No. 2073/2005 (EFSA and ECDC, 2014) indicates the official analytical reference methods to detect foodborne pathogens and the microbiological acceptability limits for each food category. For Salmonella spp. and L. monocytogenes detection, the reference methods are culture-based (ISO, 1996, 2002). Although efficient, these methods...
are time-consuming and labour-intensive, i.e. each target bacterium requires its own protocol and up to 7 days are needed to confirm their presence. This hampers a rapid answer in case of outbreaks where a swift (re)action is required.

Molecular methods are increasingly accepted as good alternatives since they are fast, sensitive and specific. Up to now, several real-time PCR (qPCR) assays have been developed for detection of *Salmonella* spp. (e.g. Hein et al., 2006; Josefsen et al., 2007; Liming and Bhagwat, 2004; Malorny et al., 2004, 2007; Pasquali et al., 2013; Perelle et al., 2004; Seo et al., 2004; Wang and Mustapha, 2010) and *L. monocytogenes* (e.g. Berrada et al., 2006; Hough et al., 2002; Novga et al., 2000; O’Grady et al., 2008, 2009; Oravcova et al., 2007; Rossmanith et al., 2006; Rudi et al., 2005) in food products. These systems provide single-genus or single-species detection systems for *Salmonella* spp. and *L. monocytogenes*, respectively. Moreover, they target a single gene with a single-assay. This could lead to false negative results in case of targeted gene mutation or deletion (Barbau-Piednoir et al., 2013b; Hu et al., 2008). To mitigate these inconveniences, approaches targeting two genes for *Salmonella* spp. detection (Gonzalez-Escalona et al., 2012) or targeting several bacteria at the same time (Garrido et al., 2012a, 2012b; Ma et al., 2014; Köppel et al., 2013; Singh et al., 2012) have been developed. Recently, this strategy was further improved with the Combinatory SYBR®Green qPCR Screening system for pathogen detection in food samples (CoSYPS Path Food), able to detect in a single-step both *Salmonella* spp. and *Listeria* spp., and to give information about species and subspecies detected (Barbau-Piednoir et al., 2013a, 2013b). This system contains several target genes per bacterium to create a multi-level detection system. All SYBR®Green qPCR assays of this CoSYPS Path Food system have been validated (Barbau-Piednoir et al., 2013a, 2013b) and can be used together as a single-plate detection system. This detection system is part of the complete CoSYPS Path Food workflow, studied in the present paper, which includes all steps from swab sample enrichment, DNA extraction, *Salmonella* spp. and *Listeria* spp. qPCR detection, isolation and confirmation of the detected strains.

In order to validate this complete CoSYPS Path Food workflow as an alternative method to the reference ISO methods, a final confirmation is required. The ISO 16140:2003 (ISO, 2003) describes the process to validate an alternative method by comparing it with a reference method. The complete validation is composed of two steps: i) a comparison study of the alternative method versus the reference method carried out in the organizing laboratory, and ii) an inter-laboratory study performed with both methods in parallel. The first part allows alternative method to be used in the laboratory under accreditation. The second part is performed for commercialisation purposes.

In this paper, the first part of the ISO 16140:2003-validation was performed. The results of *Salmonella* spp. and *Listeria* spp. detection in carcass swab samples obtained by the complete CoSYPS Path Food workflow were compared to those obtained with the reference methods: ISO 6579:2002/Cor 1:2004 and ISO 11290-1:1996/Amd.1:2005 (ISO, 1996, 2002, 2004a, 2005). The limits of detection of each method were determined and compared. Different validation criteria such as relative detection level, relative sensitivity, relative specificity, relative accuracy, Cohen kappa index and practicability of both detection methods were investigated. Finally the advantages of using the complete CoSYPS Path Food workflow were discussed.

2. Materials and methods

2.1. Bacterial strains and spiked preparation

*Salmonella enterica* subsp. *enterica* Enteritidis (H:VI6,32 from Belgian *Salmonella* NRC) and *L. monocytogenes* serotype 1/2a (ATCC 51772) were used to artificially contaminate the swab samples. A single colony was inoculated in 10 ml of Brain Heart Infusion (BHI) broth and cultured at 37 °C without shaking for 16–18 h. This culture was diluted in sterile BHI broth to get an OD<sub>600 nm</sub> at 1 (around 5.10<sup>6</sup> CFU/ml). This dilution called D0 was used as starter in a 10-fold serial dilution until D-9 in buffered peptone water (BPW). To perform the enumeration of D-6 to D-9, 100 μl of these dilutions was plated in triplicate on nutrient agar plates and incubated for 18 ± 2 h at 37 °C. These four dilutions were used to spike the swab samples.

2.2. Spiked carcass swab samples

To create artificial beef carcass swab samples containing the same resident microflora as the genuine beef carcass swab samples, 25 g of minced meat (100% beef) (free of *Salmonella* spp. and *Listeria* spp.) from a retail shop was stomached in 225 ml of BPW medium in a filter stomacher bag giving a “minced meat juice”. A BPW-hydrated sponge (swab) introduced into a new filter stomacher bag was soaked with 10 ml of this “minced meat juice”. To spike these swabs, 100 μl of D-6 to D-9 was added onto the swab. The spiked swabs were stored for 18 ± 2 h at fridge temperature to mimic the storage and transport steps that are undergone by real swab samples between sampling and analysis (ISO, 2004b).

2.3. *Listeria* spp. and *Salmonella* spp. detection, isolation and confirmation methods

The workflow of the procedure followed by all the detection methods is shown in detail in Fig. 1.

2.3.1. Common pre-enrichment step

Spiked swab samples were pre-enriched in 90 ml BPW for 24 ± 2 h at 37 °C without shaking. As requested by ISO16140:2003, the same sample was used for the analysis with the ISO reference methods as well as with the complete CoSYPS Path Food workflow.

2.3.2. ISO reference methods

The reference method used to detect *L. monocytogenes* was the ISO 11290-1:1996 amended by ISO1290-1/A1:2005 (ISO, 1996, 2005). A variation from this protocol was performed. BPW was used instead of Half-Fraser for the pre-enrichment to be able to perform *Salmonella* and *Listeria* detection at the same time. The choice was made to use a single swap sample instead of using two swap samples (respectively enriched by BPW and Half-Fraser) that would introduce a bias in the contamination level. The reference method used for *Salmonella* spp. detection was ISO 6579:2002.

2.3.2.1. Enrichment step. The BPW pre-enrichment broth, after incubation, was used to inoculate a selective Fraser enrichment broth, for *Listeria* detection and Rappaport-Vassiliadis Soja (RVS) and Müller-Kauffmann tetrazionate-novobiocin (MKTtn) selective broths for *Salmonella* detection.

2.3.2.2. Isolation. The isolation was performed by plating out the selective enrichment broth on selective solid media. For *Listeria* spp., the isolation was performed on Agar *Listeria* according to Ottaviani and Agosti (ALOA) and Rapid L’Mono (RLM) agar, while for *Salmonella* spp., the isolation media were Xylose-Lysine-Deoxycholate (XLD) agar and ChromID™ *Salmonella* (SMID) agar.

2.3.2.3. Confirmation. For *Listeria* spp., no confirmation was performed. Indeed, the presence of typical colonies on selective plates was enough to get a positive result as they were spiked samples.

For *Salmonella* spp., one typical colony on each of the selective plates, i.e. two typical colonies were selected. These colonies were biochemically confirmed. In this validation, the expected feature on Hajna-Kligler iron agar (≡ Triple sugar iron agar (TSI)) was considered as a positive result. As the samples were *Salmonella*-spiked, neither Rapid ID32E nor serological confirmation was performed.
2.3.3. The complete CoSYPS Path Food workflow

2.3.3.1. DNA extraction. After 24 h of pre-enrichment, 1 ml of the pre-enrichment broth was transferred into a 1.5 ml micro-centrifuge tube, centrifuged for 10 min at 6000 \( \times g \) at room temperature and the supernatant was discarded. The pellet was extracted with the Nucleospin food kit (Macherey–Nagel®) according to the manufacturer’s recommendations.

2.3.3.2. CoSYPS analysis. The Salmonella and Listeria spp. detection were performed using the CoSYPS Path Food detection system. This system is composed of respectively seven and four SYBR®Green qPCR assays, for the detection of Salmonella spp. and Listeria spp. and their discrimination at species and sub-species levels (Barbau-Piednoir et al., 2013a, 2013b). These eleven qPCR assays can be run separately or together on the same plate (as eleven singleplex). All qPCR assays were performed on an iCycler iQ™5 Real-Time PCR Detection System (Bio-rad) with iCycler iQ™ PCR plates, 96 wells (Bio-rad) closed with the PCR Sealers Microseal B films (Bio-rad). All qPCR assay reactions were performed according to the same protocol: the reactions were performed in a final volume of 25 \( \mu l \) containing 5 \( \mu l \) of the diluted DNA extract (1/2 for Listeria qPCR assays and 1/1000 for Salmonella qPCR assays), 1X SYBR®Green PCR Mastermix (DSMG-2X-A300, Diagenode), and the appropriate concentration of each primer (Barbau-Piednoir et al., 2013a, 2013b). Primers were purchased from Eurogentec (Belgium). The following thermal programme was applied: a single cycle of DNA polymerase activation for 10 min at 95 °C followed by 40 amplification cycles of
15 s at 95 °C (denaturing step) and 1 min at 60 °C (annealing–extension step). Subsequently, melting temperature analysis of the amplification products was performed by gradually increasing the temperature from 60 °C to 95 °C over 20 min (±0.6 °C/20 s). The fluorescent reporter signal was normalized against the internal reference dye (ROX) signal and the threshold limit was set manually at the beginning of the exponential amplification phase. “No Template” Controls (NTC) using DNase and RNase free water were included in each reaction to assess primer dimer formation or non-specific amplification. A positive control using 10^4 copies of gDNA of *L. monocytogenes* 1/2a strain ATCC 51772 or *S. enterica* subsp. *enterica* Enteritidis (Belgian CNR *Salmonella* ref H.V.6.32) from pure strains extracted with the DNase® Blood and tissue Extraction kit (Qiagen) was included in each qPCR reaction.

For the interpretation of a SYBR®Green qPCR assay, two criteria were analysed: the quantification cycle (Cq) value, and the melting temperature of the amplicon (Tm). The Cq-value represents the fractional cycle at which the PCR amplification reaches the threshold level for the reaction (Bustin, 2000). Since it is a screening assay, only a qualitative response is required. To be considered as positive, a signal fractional cycle at which the PCR amplification reaches the threshold limit was set manually at the beginning of the exponential amplification phase. “No Template” Controls (NTC) using DNase and RNase free water were included in each reaction to assess primer dimer formation or non-specific amplification. A positive control using 10^4 copies of gDNA of *L. monocytogenes* 1/2a strain ATCC 51772 or *S. enterica* subsp. *enterica* Enteritidis (Belgian CNR *Salmonella* ref H.V.6.32) from pure strains extracted with the DNase® Blood and tissue Extraction kit (Qiagen) was included in each qPCR reaction.

For the interpretation of a SYBR®Green qPCR assay, two criteria were analysed: the quantification cycle (Cq) value, and the melting temperature of the amplicon (Tm). The Cq-value represents the fractional cycle at which the PCR amplification reaches the threshold level for the reaction (Bustin, 2000). Since it is a screening assay, only a qualitative response is required. To be considered as positive, a signal fractional cycle at which the PCR amplification reaches the threshold limit was set manually at the beginning of the exponential amplification phase. “No Template” Controls (NTC) using DNase and RNase free water were included in each reaction to assess primer dimer formation or non-specific amplification. A positive control using 10^4 copies of gDNA of *L. monocytogenes* 1/2a strain ATCC 51772 or *S. enterica* subsp. *enterica* Enteritidis (Belgian CNR *Salmonella* ref H.V.6.32) from pure strains extracted with the DNase® Blood and tissue Extraction kit (Qiagen) was included in each qPCR reaction.

For the interpretation of a SYBR®Green qPCR assay, two criteria were analysed: the quantification cycle (Cq) value, and the melting temperature of the amplicon (Tm). The Cq-value represents the fractional cycle at which the PCR amplification reaches the threshold level for the reaction (Bustin, 2000). Since it is a screening assay, only a qualitative response is required. To be considered as positive, a signal fractional cycle at which the PCR amplification reaches the threshold limit was set manually at the beginning of the exponential amplification phase. “No Template” Controls (NTC) using DNase and RNase free water were included in each reaction to assess primer dimer formation or non-specific amplification. A positive control using 10^4 copies of gDNA of *L. monocytogenes* 1/2a strain ATCC 51772 or *S. enterica* subsp. *enterica* Enteritidis (Belgian CNR *Salmonella* ref H.V.6.32) from pure strains extracted with the DNase® Blood and tissue Extraction kit (Qiagen) was included in each qPCR reaction.
The relative detection level is the smallest number of culturable microorganisms that can be detected in the sample in 50% of the occasions by the alternative and reference methods.

2.5.4. **Practicability**

The AFNOR technical board listed thirteen practicability criteria (AFNOR, 2013). Some of these criteria, judged as relevant by the authors, were evaluated in the present study: the training of the operator, the laboratory equipment and the time required to get results.

3. **Results and discussion**

3.1. **LOD and the relative level of detection determination**

Beef carcass swab samples spiked with different *L. monocytogenes* or *S. enterica* subsp. *enterica* concentrations were analysed in parallel with the ISO reference methods and the complete CoSYPS Path Food workflow. The swabs spiked with the dilutions D-6 and D-7 were positive in the four independent repeats with the complete CoSYPS Path Food workflow as well as with the ISO reference methods. The D-8 gave 50% (2/4 repeats) of positive with ISO 11290-1:1996 and 25% of positive with the ISO 6579:2002 and the complete CoSYPS Path Food workflow. The D-9 gives 25% of positives with all the tested methods. Considering these results, the limit of detection (LOD) of both conventional and CoSYPS methods as well as the relative detection level (RDL) are at dilution $-7$ (D-7), i.e. between 4 and 16 CFU/swab for *L. monocytogenes* detection and between 2 and 11 CFU/swab for *S. enterica* subsp. *enterica* detection. To confirm these LOD and RDL, six additional swabs spiked with D-7 were analysed. These six additional repeats gave all positive results, confirming both criteria (Table 1). The study demonstrated that the complete CoSYPS Path Food workflow is as efficient as the reference ISO methods to detect low concentration of targets.

3.2. **Relative specificity, relative specificity and relative accuracy and Cohen’s kappa index determination**

Twenty beef carcass swab samples spiked with different *L. monocytogenes* and/or *S. enterica* subsp. *enterica* concentrations were analysed in parallel with the ISO reference methods and the complete CoSYPS Path Food workflow. Each of the swabs spiked with the different concentrations of bacteria gave the expected positive signal (12/12) with both approaches, whereas the non-spiked swabs gave all a negative signal (8/8) (Table 2). This demonstrates that the complete CoSYPS Path Food workflow was able to detect both target bacteria in a tested sample, even when one target was present at very low concentration. This is particularly important for samples containing low *Listeria* spp. numbers. Indeed, *Listeria* spp. grow slower than *Enterobacteriaceae* and its growth could be inhibited by the beef carcass co-resident microflora, and by *Salmonella* spp. in case of double contamination and the pre-enrichment in BPW instead of Half-Fraser is less optimal for *Listeria* spp. growth. However, these results demonstrated that BPW is efficient enough for *Listeria* detection as low as 4–16 cfu/swab with an overnight storage of the swab samples at fridge temperature.

From these results, the positive and negative agreements (PA and NA), the positive and negative deviations (PD and ND) were assessed. For both targets, the PA and the NA result were 12 and 8 respectively while the ND and PD were 0. These values allowed the calculation of a 100% relative sensitivity (SE), 100% relative specificity (SP) and 100% relative accuracy (AC) and a Cohen’s kappa index of 1.00. The results obtained with the complete CoSYPS Path Food workflow compared with the results obtained with the ISO methods (Table 2). These values demonstrated that the complete CoSYPS Path Food workflow is as efficient as the reference methods in detecting *Salmonella* spp. and *L. monocytogenes* in beef carcass swab samples.

3.3. **Practicability**

To perform the ISO reference methods, as well as the complete CoSYPS Path Food workflow, classical L2 laboratory microbiological equipments are required. In addition, the complete CoSYPS Path Food workflow required qPCR well-trained personnel operating a properly maintained qPCR apparatus.

The ISO 11290-1:1996 and ISO 6579:2002 comprise a pre-enrichment step, a selective enrichment step and isolation on...
selective plates (Fig. 1). These different steps need four and five days for *Salmonella* spp. and *L. monocytogenes* detection, respectively, since each culture step requires an 18 to 24 h of incubation (48 h for Fraser selective enrichment). If no typical colonies are observed on selective plates, the sample is concluded as containing no *Salmonella* spp. or *L. monocytogenes* and the analysis is stopped. If typical colonies are observed, further steps are needed to confirm the presence of *Salmonella* spp. and *L. monocytogenes*.

### Table 1
Comparative results of swab spiked with a 10-fold serial dilution of *S. Enteritidis* or *L. monocytogenes* tested in parallel with the ISO reference methods or the CoSYPS Path Food workflow.

<table>
<thead>
<tr>
<th></th>
<th>ISO CoSYPS</th>
<th>ISO CoSYPS</th>
<th>ISO CoSYPS</th>
<th>ISO CoSYPS</th>
<th>ISO CoSYPS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Listeria detection</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spike; CFU/swab (dilution)</td>
<td>77–150 (D-6)</td>
<td>4–16 (D-7)</td>
<td>0–2 (D-8)</td>
<td>0–1 (D-9)</td>
<td>0 (C-)</td>
</tr>
<tr>
<td>Repeat 1</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Repeat 2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Repeat 3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Repeat 4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Repeat 5</td>
<td>nt</td>
<td>nt</td>
<td>+</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td>Repeat 6</td>
<td>nt</td>
<td>nt</td>
<td>+</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td>Repeat 7</td>
<td>nt</td>
<td>nt</td>
<td>+</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td>Repeat 8</td>
<td>nt</td>
<td>nt</td>
<td>+</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td>Repeat 9</td>
<td>nt</td>
<td>nt</td>
<td>+</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td>Repeat 10</td>
<td>nt</td>
<td>nt</td>
<td>+</td>
<td>nt</td>
<td>nt</td>
</tr>
<tr>
<td>Percentage of positive</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Salmonella detection</strong></th>
<th>ISO CoSYPS</th>
<th>ISO CoSYPS</th>
<th>ISO CoSYPS</th>
<th>ISO CoSYPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spike; CFU/swab (dilution)</td>
<td>30–60 (D-6)</td>
<td>2–11 (D-7)</td>
<td>0–1 (D-8)</td>
<td>0 (D-9)</td>
</tr>
<tr>
<td>Repeat 1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Repeat 2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Repeat 3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Repeat 4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Repeat 5</td>
<td>nt</td>
<td>nt</td>
<td>+</td>
<td>nt</td>
</tr>
<tr>
<td>Repeat 6</td>
<td>nt</td>
<td>nt</td>
<td>+</td>
<td>nt</td>
</tr>
<tr>
<td>Repeat 7</td>
<td>nt</td>
<td>nt</td>
<td>+</td>
<td>nt</td>
</tr>
<tr>
<td>Repeat 8</td>
<td>nt</td>
<td>nt</td>
<td>+</td>
<td>nt</td>
</tr>
<tr>
<td>Repeat 9</td>
<td>nt</td>
<td>nt</td>
<td>+</td>
<td>nt</td>
</tr>
<tr>
<td>Repeat 10</td>
<td>nt</td>
<td>nt</td>
<td>+</td>
<td>nt</td>
</tr>
<tr>
<td>Percentage of positive</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

ISO methods are ISO11290-1** and ISO 6579, for *Listeria* and *Salmonella* detection, respectively. CoSYPS: complete CoSYPS Path Food workflow.

**This positive is not a false positive, it is due to the bias in the spike enumeration, i.e. the spike is evaluated by enumeration of 3 repetitions of the spike (an enumeration of the spike itself is not possible).**

**Slightly modified as enrichment is done with BPW instead of Half-Frazer.**

Table 2
Comparative results of the culture-based reference methods with the CoSYPS *Salmonella* and *Listeria* on the detection in spiked artificial swabs of beef meat.

<table>
<thead>
<tr>
<th></th>
<th>Listeria detection comparison</th>
<th>Salmonella detection comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ISO CoSYPS Listeria</td>
<td>ISO 11290 Comparison</td>
</tr>
<tr>
<td><strong>Listeria detection</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 1</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Sample 2</td>
<td>10–19</td>
<td>+</td>
</tr>
<tr>
<td>Sample 3</td>
<td>121–131</td>
<td>+</td>
</tr>
<tr>
<td>Sample 4</td>
<td>1105–1555</td>
<td>+</td>
</tr>
<tr>
<td>Sample 5</td>
<td>1105–1555</td>
<td>+</td>
</tr>
<tr>
<td>Sample 6</td>
<td>121–131</td>
<td>+</td>
</tr>
<tr>
<td>Sample 7</td>
<td>10–19</td>
<td>+</td>
</tr>
<tr>
<td>Sample 8</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Sample 9</td>
<td>121–131</td>
<td>+</td>
</tr>
<tr>
<td>Sample 10</td>
<td>1105–1555</td>
<td>+</td>
</tr>
<tr>
<td>Sample 11</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Sample 12</td>
<td>10–19</td>
<td>+</td>
</tr>
<tr>
<td>Sample 13</td>
<td>10–19</td>
<td>+</td>
</tr>
<tr>
<td>Sample 14</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Sample 15</td>
<td>1105–1555</td>
<td>+</td>
</tr>
<tr>
<td>Sample 16</td>
<td>121–131</td>
<td>+</td>
</tr>
<tr>
<td>Sample 17</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Sample 18</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Sample 19</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Sample 20</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>PA</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SE (%)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>SP (%)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>AC (%)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Cohen’s kappa index</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

* This sample have to be reextracted since in first extract a false positive was observed; +: positive result; −: negative result; PA: positive agreement; NA: negative agreement; ND: negative deviation; PD: positive deviation; SE: relative sensitivity; SP: relative specificity; and AC: relative accuracy.

**Cohen’s kappa conclusion Very good agreement**
observed on the selective plates, it is a presumptive positive result, and further biochemical confirmations are performed, which takes an additional day (Fig. 1). The complete CoSYPS Path Food workflow comprises a pre-enrichment step, followed by a DNA extraction and a CoSYPS detection system (qPCR analysis). These steps can be completed within two days (including an overnight enrichment) as DNA extraction and CoSYPS analysis are easily performed within a single day. Indeed, DNA extraction requires maximum 3 h and the CoSYPS analysis needs around 4 h (preparation, running and result interpretation). If the CoSYPS analysis result is negative, the sample is concluded as containing neither Salmonella spp. nor Listeria spp. and the analysis is stopped. If the CoSYPS analysis result is positive, it is a presumptive positive. Thus, the CoSYPS Path Food workflow provides a negative or presumptive positive result in half the time needed for the ISO detection methods (two days instead of four/five days). This reduced time is an important advantage, especially in case of outbreaks and for self-control of short-life products. Moreover, for a food business operator a presumptive positive is enough to take action. To be confirmed, a presumptive positive sample must continue the complete workflow with the selective enrichment, isolation on selective plate and confirmation of the isolated strain which require four additional days (Fig. 1). Thus, a confirmed positive result requires the same number of days, i.e., 6 days for Salmonella spp. and Listeria spp. analysis.

4. Conclusion

This validation study confirms that the complete CoSYPS Path Food workflow is as efficient as the reference methods in detecting Salmonella spp. and L. monocytogenes in beef carcass swab samples. Thus, it is a valuable alternative to the ISO reference methods for beef carcasses control before commercial distribution.

This validation was performed on artificially contaminated swab samples. Although this validation replies to the ISO 16140 requirements, for the full implementation of the developed workflow in a laboratory, the authors recommend analyzing real-swab samples in parallel with the ISO reference methods. This would confirm its reliability and consequently, then, the current ISO methods could be replaced by the complete CoSYPS Path Food workflow.

The complete CoSYPS Path Food workflow presents several advantages. Firstly, as a multi-genus system, this workflow is able to detect the presence of both pathogens in a single plate and from a single sample. Secondly, as a multi-level system, it has the advantage over other previously developed qPCR-based detection systems to provide information about detected strain species and/or subspecies. Thirdly, it gives negative or presumptive positive results in two days whereas four and five days are required for ISO 6579:2002 and ISO 11290-1:1996, respectively. Finally, it presents an additional advantage of great flexibility over other available qPCR-based detection systems. The CoSYPS Path Food qPCR detection step is indeed adaptable to the sample requirements: i) the tested target list can be adapted to the analysis purpose and ii) new foodborne pathogens can be added into the qPCR detection system as long as new qPCR assays are developed to be run in the already used PCR conditions (Barbau-Piednoir et al., 2013a, 2013b). The selective enrichment, isolation and confirmation steps would have to be specific to the added foodborne pathogen, using the protocols provided into the respective ISO reference methods (when available). Thus, this workflow could be upgraded with additional foodborne pathogen targets with a limited amount of work.

Acknowledgements

This work was funded by an Ylief grant from the Belgian Federal Public Service: Public Health Food Chain Safety and Environment.

References


ria-paths transmitted commonly through food: foodborne diseases active surveil-


European Food Safety Authority (EFSA), European Centre for Disease Prevention, Control (ECDC), 2014. The European Union summary report on trends and sources of zoono-
doi.org/10.2903/j.efsa.2014.3547.


Hein, I., Flekina, K., Krassing, M., Wagner, M., 2006. Generic qPCR for the detection of Salmonella spp. in food: an alternative approach to a conventional PCR system sug-

merase chain reaction. J. Food Prot. 65, 1329–1332.


biology of Food and Animal Feeding Stuffs — Horizontal Method for the Detection of Salmonella spp. — Technical Corrigendum 1. International Organization for Standard-
ization, Geneva, Switzerland.

biology of Food and Animal Feeding Stuffs — Horizontal Method for the Detection of Salmonella spp. — Technical Corrigendum 1. International Organization for Standard-
ization, Geneva, Switzerland.


